login
Number of primes in the neighborhood of 3^n with radius ceiling(log(3^n)).
0

%I #8 Nov 16 2019 20:09:11

%S 3,2,3,2,2,2,1,3,2,2,0,0,1,3,3,0,2,2,2,3,2,4,1,3,3,2,3,2,1,2,2,1,0,1,

%T 2,5,2,3,0,2,4,1,0,3,3,2,2,1,3,3,2,1,2,3,2,2,5,0,3,2,2,3,4,0,1,3,0,1,

%U 4,0,2,1,1,2,3,2,3,1,2,3,3,0,0,1,2,2,2,2,2,2,5,3,0,1,6,1,4,5,1,2,3,2,1,1,2

%N Number of primes in the neighborhood of 3^n with radius ceiling(log(3^n)).

%F a(n) equals almost A096509(3^n) >= a(n) because here only primes are counted, the true prime powers not.

%Y Cf. A096509-A096523, A096830-A096840.

%K nonn

%O 1,1

%A _Labos Elemer_, Jul 14 2004