The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096797 Triangle of coefficients, read by row polynomials P_n(y), that satisfy the g.f.: A038497(x,y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], with P_n(0)=0 for n>=1 and P_0(0)=1. 1
 1, 3, 1, 8, 0, 1, 16, -1, 0, 1, 34, -15, 0, 0, 1, 54, -40, 3, 0, 0, 1, 104, -119, 21, 0, 0, 0, 1, 156, -260, 88, -1, 0, 0, 0, 1, 261, -576, 305, -27, 0, 0, 0, 0, 1, 382, -1111, 850, -155, 3, 0, 0, 0, 0, 1, 615, -2167, 2167, -638, 33, 0, 0, 0, 0, 0, 1, 842, -3854, 5056, -2164, 240, -1, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A038497 is the matrix square of partition triangle A008284. The first column forms the Moebius transform of {n*A000041(n), n>=1}. The inverse Moebius transform of each column forms the columns of triangle {n/k*A096798(n,k)}. LINKS EXAMPLE 1/A038497(x,y) = (1-x)^y*(1-x^2)^[(3y+y^2)/2]*(1-x^3)^[(8y+y^3)/3]*(1-x^4)^[(16y-y^2+y^4)/ 4]*(1-x^5)^[(34y-15y^2+y^5)/5]*... Rows begin: [1], [3,1], [8,0,1], [16,-1,0,1], [34,-15,0,0,1], [54,-40,3,0,0,1], [104,-119,21,0,0,0,1], [156,-260,88,-1,0,0,0,1], [261,-576,305,-27,0,0,0,0,1], [382,-1111,850,-155,3,0,0,0,0,1], [615,-2167,2167,-638,33,0,0,0,0,0,1], [842,-3854,5056,-2164,240,-1,0,0,0,0,0,1], [1312,-6916,11089,-6409,1183,-39,0,0,0,0,0,0,1], [1782,-11649,23037,-17241,4704,-343,3,0,0,0,0,0,0,1],... CROSSREFS Cf. A038497, A008284, A096798. Sequence in context: A285020 A165781 A152095 * A084246 A141252 A276168 Adjacent sequences:  A096794 A096795 A096796 * A096798 A096799 A096800 KEYWORD sign,tabl AUTHOR Paul D. Hanna, Jul 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 13:41 EDT 2021. Contains 343791 sequences. (Running on oeis4.)