login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^4 = x^3 + y^2 has an integer solution.
5

%I #31 Jul 07 2023 21:22:36

%S 1,5,7,17,42,71,78,97,215,307,383,433,545,804,1351,1727,1777,1849,

%T 2039,2316,2387,2395,2899,2981,3331,4446,5441,7057,7189,7321,8023,

%U 8135,9847,9959,11052,13175,13679,17514,18143,18817,18929,19110,20593,22247,23417,23783,24407,24648

%N Numbers k such that k^4 = x^3 + y^2 has an integer solution.

%H Darío Alpern, <a href="https://www.alpertron.com.ar/SPOW432.HTM">List of first 1602 solutions to a^4 + b^3 = c^2 for increasing values of a</a>

%e 433 is in the sequence since we have 433^4 + 26462^3 = 4308693^2.

%t a[1][s_, t_] := 6*s^5*t + 72*s*t^5; a[2][s_, t_] := 18*s^5*t + 24*s*t^5; a[3][s_, t_] := -s^6 + 40*s^3*t^3 + 32*t^6; a[4][s_, t_] := -s^6 - 15*s^4*t^2 + 45*s^2*t^4 + 27*t^6; a[5][s_, t_] := -s^6 + 6*s^5*t + 15*s^4*t^2 + 20*s^3*t^3 - 15*s^2*t^4 + 30*s*t^5 + 17*t^6; a[6][s_, t_] := -5*s^6 - 6*s^5*t + 15*s^4*t^2 + 60*s^3*t^3 + 45*s^2*t^4 + 18*s*t^5 + 9*t^6; a[7][s_, t_] := -7*s^6 - 6*s^5*t + 30*s^4*t^2 + 80*s^3*t^3 + 60*s^2*t^4 + 24*s*t^5 + 8*t^6; b[1][s_, t_] := s^8 - 168*s^4*t^4 + 144*t^8; b[2][s_, t_] := 9*s^8 - 168*s^4*t^4 + 16*t^8; b[3][s_, t_] := 8*s^7*t + 112*s^4*t^4 - 256*s*t^7; b[4][s_, t_] := -s^8 + 28*s^6*t^2 + 42*s^4*t^4 + 252*s^2*t^6 - 81*t^8; b[5][s_, t_] := 2*s^8 + 8*s^7*t + 56*s^5*t^3 - 28*s^4*t^4 - 168*s^3*t^5 - 112*s^2*t^6 - 88*s*t^7 + 42*t^8; b[6][s_, t_] := 6*s^8 + 56*s^7*t + 112*s^6*t^2 + 168*s^5*t^3 + 252*s^4*t^4 + 168*s^3*t^5 - 72*s*t^7 - 18*t^8; b[7][s_, t_] := 15*s^8 + 104*s^7*t + 224*s^6*t^2 + 336*s^5*t^3 + 392*s^4*t^4 + 224*s^3*t^5 - 64*s*t^7 - 16*t^8; tab = Table[{a[k][s, t] // Abs, -b[k][s, t]}, {k, 1, 7}, {s, -5, 8}, {t, 0, 5}] // Flatten[#, 2] & // Select[#, 0 < #[[1]] < 25000 &] & // Union; r[{n_, x_}] := (rn = Reduce[y > 0 && GCD[n, x, y] == 1 && n^4 == x^3 + y^2, y, Integers]; If[rn =!= False, {rn, {n, x, y} /. ToRules[rn]}, {False, 0, 0}]); Select[tab, r[#][[1]] =!= False &] [[All, 1]] // Rest (* _Jean-François Alcover_, Jan 23 2013, after Darío Alpern *)

%K nice,nonn

%O 1,2

%A _Lekraj Beedassy_, May 30 2002

%E Example fixed by _Jean-François Alcover_, Jan 23 2013

%E Terms 7, 1351, 2899, 2981, 18929, 24648 inserted by _Jean-François Alcover_, Jan 23 2013