login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 2; for n>1: a(n) = integer part of y-value when x=0 in (y-tau(n))/(x-1)=(1-tau(n))/(n-1), tau=A000005.
2

%I #12 Nov 28 2016 03:58:04

%S 2,3,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,8,2,6,4,4,

%T 4,9,2,4,4,8,2,8,2,6,6,4,2,10,3,6,4,6,2,8,4,8,4,4,2,12,2,4,6,7,4,8,2,

%U 6,4,8,2,12,2,4,6,6,4,8,2,10,5,4,2,12,4,4,4,8,2,12,4,6,4,4,4,12,2,6,6

%N a(1) = 2; for n>1: a(n) = integer part of y-value when x=0 in (y-tau(n))/(x-1)=(1-tau(n))/(n-1), tau=A000005.

%C a(n) = 2 iff n is prime.

%H G. C. Greubel, <a href="/A096737/b096737.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = floor((n*tau(n)-1)/(n-1))for n>1, a(1) = 2.

%F a(1)=2, a(2)=3, a(n)=tau(n) if n>2. - _Michael Somos_, Sep 03 2006

%e See A096736.

%t Join[{2, 3}, Table[Floor[(n*DivisorSigma[0, n] - 1)/(n - 1)], {n,3,100}]] (* _G. C. Greubel_, Nov 27 2016 *)

%Y Cf. A096736.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jul 06 2004