OFFSET
1,1
COMMENTS
a(n) < 2*n; a(n) = 2*n-1 iff n is prime;
let m=A096738(n): a(m)=(m*tau(m)-1)/(tau(m)-1).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = floor((n*tau(n)-1)/(tau(n)-1)) for n>1, a(1) = 2.
EXAMPLE
Divisors of n=12: {1,2,3,4,6,12}, A000005(12)=6:
a(12) = floor((12*6-1)/(6-1)) = floor(71/5) = floor(14.2)=14:
+--O
|..| .. div=1
+--+--+
|..|..| ... div=2
+--+--+--+
|..|..|..| .... div=3
+--+--+--+--+
|..|..|..|..| ..... div=4
+--+--+--+--+--+--+
|..|..|..|..|..|..| ....... div=6
+--+--+--+--+--+--+--+--+--+--+--+--O
|..|..|..|..|..|..|..|..|..|..|..|..| ............. div=12
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+X-+--+-
0__1__2__3__4__5__6__7__8__9_10_11_12_13_14_15_16 ....
MATHEMATICA
Join[{2}, Table[Floor[(n*DivisorSigma[0, n] - 1)/(DivisorSigma[0, n] - 1)], {n, 2, 100}]] (* G. C. Greubel, Nov 27 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 06 2004
STATUS
approved