The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096657 a(n) = (2^n)*a(n-1) + (2^(n-1))*a(n-2), a(0)=1, a(1)=3. 2

%I

%S 1,3,14,124,2096,69056,4486656,578711552,148724449280,76295068188672,

%T 78202296743231488,160236429879963287552,656488575092059763900416,

%U 5378610735570941915498020864,88128536246001466497105446043648

%N a(n) = (2^n)*a(n-1) + (2^(n-1))*a(n-2), a(0)=1, a(1)=3.

%C This is the sequence of numerators of self-convergents to the number 1.40861... whose self-continued fraction is (1,2,4,8,16,...)=A000079. See A096658 for denominators and A096654 for definitions.

%F a(n) is asymptotic to c*2^(n(n+1)/2) where c = 2.1726687508496636560169136... - _Benoit Cloitre_, Jul 02 2004

%F c = 1 + Sum_{k>=1} (Product_{j=1..k} 1/(2^(j-1)*(2^j-1))) = 2.172668750849663656016913609859312820656436935109608860295... . - _Vaclav Kotesovec_, Nov 27 2015

%F a(n) = Sum_{k=0..n+1} q-binomial(n-k+1,k)*2^(binomial(n-k+1,2)+binomial(k,2)), where q-binomial is triangle A022166, that is, with q=2. - _Vladimir Kruchinin_, Jan 19 2020

%e a(2)=4*3+2*1=14, a(3)=8*14+4*3=124.

%t a[0] = 1; a[1] = 3; a[n_] := (2^n)*a[n-1] + (2^(n-1))*a[n-2]; Table[ a[n], {n, 0, 14}] (* _Robert G. Wilson v_, Jul 03 2004 *)

%t b[n_, k_] := k^2 - k (1 + n) + n (1 + n)/2;

%t a[n_] := Sum[2^b[n, k] QBinomial[n - k + 1, k, 2], {k, 0, n + 1}] ;

%t Table[a[n], {n, 0, 14}] (* After _Vladimir Kruchinin_, _Peter Luschny_, Jan 19 2020 *)

%Y Cf. A000079, A096654, A096658.

%K nonn

%O 0,2

%A _Clark Kimberling_, Jul 01 2004

%E More terms from _Benoit Cloitre_, Jul 02 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 16:56 EDT 2020. Contains 336381 sequences. (Running on oeis4.)