login
A096648
Number of partitions of an n-set with odd number of even blocks.
2
0, 1, 3, 7, 25, 106, 434, 2045, 10707, 57781, 338195, 2115664, 13796952, 95394573, 692462671, 5235101739, 41436754261, 341177640610, 2915100624274, 25866987547865, 237448494222575, 2252995117706961, 22078799199129799, 222971522853648704, 2319210969809731600
OFFSET
1,3
LINKS
FORMULA
E.g.f.: exp(sinh(x))*sinh(cosh(x)-1).
a(2*n) = A024429(2*n) and a(2*n+1) = A024430(2*n+1). - Jonathan Vos Post, Oct 19 2005
a(n) = sum{k=0..n, if(mod(n-k,2)=1, A048993(n,k), 0)}. - Paul Barry, May 19 2006
MAPLE
with(combinat):
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1,
0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1,
irem(t+`if`(irem(i, 2)=0, j, 0), 2)), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..30); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, Mod[t+If[Mod[i, 2] == 0, j, 0], 2]], {j, 0, n/i}]]]; a[n_] := b[n, n, 2]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
With[{nn=30}, Rest[CoefficientList[Series[Exp[Sinh[x]]Sinh[Cosh[x]-1], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Sep 03 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 14 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 16 2004
STATUS
approved