login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consecutive states of a linear congruential pseudo-random number generator that has the spectrally best primitive root for 2^31-1 as multiplier.
1

%I #23 Aug 29 2024 11:56:27

%S 1,62089911,847344462,1061653656,1954074819,226824280,953102500,

%T 1452288378,50913524,2133871779,1843965925,427233754,195855103,

%U 1546822229,1652729917,1636805220,217994169,1312006067,208869911,310792805,675992938,1109700100,855351136,863373758

%N Consecutive states of a linear congruential pseudo-random number generator that has the spectrally best primitive root for 2^31-1 as multiplier.

%C The results of the spectral tests for this generator are given in line 18 of Table 1 in D. Knuth's TAOCP vol. 2, page 106.

%D G. A. Fishman, L. R. Moore III; An exhaustive analysis of multiplicative congruential random number generators with modulus 2^31-1. SIAM Journal on Scientific and Statistical Computing, Volume 7, Issue 1 (1986), 24-45. Erratum, ibid, Vol. 7, Issue 3 (1986) p. 1058.

%D D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.

%H Alois P. Heinz, <a href="/A096559/b096559.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers</a>.

%F a(1)=1, a(n)=62089911*a(n-1) mod (2^31-1).

%p a:= proc(n) option remember; `if`(n<2, n,

%p irem(62089911 *a(n-1), 2147483647))

%p end:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jun 10 2014

%t NestList[Mod[#*62089911, 2^31 - 1] &, 1, 50] (* _Paolo Xausa_, Aug 29 2024 *)

%o (PARI) a(n)=lift(Mod(62089911,2147483647)^(n-1)) \\ _M. F. Hasler_, May 14 2015

%Y Cf. A096550-A096561, A061364.

%K nonn

%O 1,2

%A _Hugo Pfoertner_, Aug 14 2004