login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096542
Triangle, read by rows, where e.g.f. A(x,y) satisfies: A(x,y) = exp(x*y*A(x,y+1)) and A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)/n!*x^n*y^k.
4
1, 0, 1, 0, 2, 3, 0, 15, 30, 16, 0, 244, 564, 444, 125, 0, 6885, 17540, 16680, 7320, 1296, 0, 298326, 817470, 877740, 478380, 136590, 16807, 0, 18377191, 53352138, 62582100, 39142600, 14146440, 2873136, 262144, 0, 1525885992, 4645224472
OFFSET
0,5
COMMENTS
Row sums form A096537.
Main diagonal forms A000272 (labeled trees on n nodes).
Secondary diagonal forms 2*A057500 (labeled connected graphs with n edges and n nodes).
Other diagonals include 3*A096543 and 4*A096544.
LINKS
FORMULA
E.g.f. satisfies: A(x, y+1) = log(A(x, y))/(x*y).
T(n, 1) = n*A096537(n).
T(n, n) = (n+1)^(n-1) = A000272(n+1).
T(n, n-1) = 2*A057500(n).
EXAMPLE
A(x,y) = exp(x*y*exp(x*(y+1)*exp(x*(y+2)*exp(...exp(x*(n+y)*exp(...))...)))).
Triangle begins:
1;
0, 1;
0, 2, 3;
0, 15, 30, 16;
0, 244, 564, 444, 125;
0, 6885, 17540, 16680, 7320, 1296;
0, 298326, 817470, 877740, 478380, 136590, 16807;
0, 18377191, 53352138, 62582100, 39142600, 14146440, 2873136, 262144;
0, 1525885992, 4645224472, 5837707848, 4032207480, 1692155640, 441093240, 67558680, 4782969; ...
PROG
(PARI) {T(n, k)=local(A=exp(x)); for(i=1, n, A=exp(x*(n-i+y)*A+x*O(x^n)+y*O(y^k))); n!*polcoeff(polcoeff(A, k, y), n, x)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 25 2004
STATUS
approved