login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime following n-th repunit.
18

%I #18 Aug 11 2023 10:59:07

%S 2,13,113,1117,11113,111119,1111151,11111117,111111113,1111111121,

%T 11111111113,111111111149,1111111111139,11111111111123,

%U 111111111111229,1111111111111123,11111111111111119,111111111111111131,1111111111111111171,11111111111111111131,111111111111111111157,1111111111111111111189

%N Prime following n-th repunit.

%C Not equal to A068693: first and 2nd terms differ.

%H Chai Wah Wu, <a href="/A096497/b096497.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A002275(n) + A096869(n) = A096498(n) + A096499(n).

%t Table[NextPrime[(10^n-1)/9], {n, 40}]

%t Table[NextPrime[FromDigits[PadRight[{},n,1]]],{n,30}] (* _Harvey P. Dale_, Aug 11 2023 *)

%o (PARI) a(n) = nextprime((10^n-1)/9 + 1); \\ _Michel Marcus_, May 02 2016

%o (Python)

%o from sympy import nextprime

%o def A096497(n):

%o return nextprime((10**n-1)//9) # _Chai Wah Wu_, Nov 04 2019

%Y Cf. A068693, A002275.

%K nonn

%O 1,1

%A _Labos Elemer_, Jul 09 2004