login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest prime p with p^n mod n = 1.
1

%I #23 Apr 23 2022 14:45:57

%S 3,7,3,11,5,29,3,7,11,23,5,53,13,31,3,103,5,191,3,37,23,47,5,11,53,7,

%T 13,59,11,311,3,67,67,71,5,149,37,61,3,83,5,173,23,31,47,283,5,29,11,

%U 103,5,107,5,31,13,7,59,709,7,367,61,37,3,131,23,269,13,139,29,569

%N a(n) = smallest prime p with p^n mod n = 1.

%H Harvey P. Dale, <a href="/A096385/b096385.txt">Table of n, a(n) for n = 2..1000</a>

%e n=5: 2^5=32=5*6+2, 3^5=243=5*48+3, 5^5 mod 5 = 0, 7^5=16807=5*3361+2, 11^5=161051=5*32210+1: a(5)=11.

%t With[{prs=Prime[Range[200]]},Table[SelectFirst[prs,PowerMod[#,n,n]==1&],{n,2,80}]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* _Harvey P. Dale_, Aug 31 2015 *)

%o (PARI) a(n) = my(p=2); while (Mod(p,n)^n !=1, p=nextprime(p+1)); p; \\ _Michel Marcus_, Feb 07 2021

%Y Cf. A015910, A066601, A066603, A066438, A066441.

%K nonn

%O 2,1

%A _Reinhard Zumkeller_, Aug 05 2004