login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096367
Number of winning paths of length n+1 across an n X n Hex board.
1
2, 14, 58, 194, 578, 1602, 4226, 10754, 26626, 64514, 153602, 360450, 835586, 1916930, 4358146, 9830402, 22020098, 49020930, 108527618, 239075330, 524288002, 1145044994, 2491416578, 5402263554, 11676942338, 25165824002, 54089744386, 115964116994, 248034361346
OFFSET
3,1
COMMENTS
If m>n-2, H(m,n) = (2*m+1-n)*2^(n-2) is the number of winning paths of length n across an m X n Hex board (cf. A001792). If m>n-1, H'(m,n) = (n-2)*(H(m-3,n-2) + H(m+1,n-2)) - 2^(n-1) + 2 is the number of winning paths of length n+1 across an m X n Hex board.
FORMULA
a(n) = (n-2)*(n+1)*2^(n-3)-2^(n-1)+2.
G.f.: -2*x^3*(2*x^2-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Sep 06 2013
EXAMPLE
a(4)=14.
PROG
(Python)
def a(n): return (n-2)*(n+1)*2**(n-3) - 2**(n-1) + 2
print([a(n) for n in range(3, 32)]) # Michael S. Branicky, Feb 14 2021
CROSSREFS
Cf. A001792.
Sequence in context: A212895 A115027 A114146 * A232601 A285153 A232370
KEYWORD
nonn,easy
AUTHOR
David Bevan, Jul 02 2004
EXTENSIONS
More terms from Colin Barker, Sep 06 2013
STATUS
approved