login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Spin(2n+1) and Spin(2n+2) have torsion index 2^a(n).
1

%I #17 Mar 07 2017 04:04:21

%S 0,0,0,1,1,1,2,3,4,4,5,5,6,7,8,9,10,10,11,12,13,14,15,15,16,17,18,19,

%T 20,21,22,23,24,25,25,26,27,28,29,30,31,32,33,34,35,35,36,37,38,39,40,

%U 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,55,56,57

%N Spin(2n+1) and Spin(2n+2) have torsion index 2^a(n).

%C First several terms agree with A169869 but the two sequences are distinct as can be seen where the values are 19 and 20. - _Skip Garibaldi_, Mar 05 2017

%H Michael De Vlieger, <a href="/A096336/b096336.txt">Table of n, a(n) for n = 0..10000</a>

%H Burt Totaro, <a href="https://www.math.ucla.edu/~totaro/papers/public_html/spin.pdf">The torsion index of the spin groups</a>, Duke Math. J. 129 (2005), no. 2, 249-290, <a href="http://doi.org/10.1215/S0012-7094-05-12923-4">doi:10.1215/S0012-7094-05-12923-4</a>.

%F a(n) is usually n-floor(log_2((n+1)n/2 + 1)), but is this number plus 1 if n = 2^e+b for nonnegative integers e, b such that 2b-a(b) <= e-3.

%t a[0] = 0; a[n_] := a[n] = Module[{e = Floor[Log2@n], b}, b = n - 2^e; n - Floor[Log2[(n + 1) n/2 + 1]] + Boole[2 b - a[b] <= e - 3]]; Table[a@ n, {n, 0, 120}] (* _Michael De Vlieger_, Mar 06 2017 *)

%o (Python)

%o import numpy as np

%o def a_typical(n):

%o '''

%o For most n, this is the value of a(n)

%o '''

%o return int(n - np.floor(np.log2( n*(n+1)/2 + 1)))

%o def a(n):

%o '''

%o The torsion index of Spin_{2n+1} and Spin_{2n+2} is 2^a(n)

%o Totaro denotes it by u(ell)

%o '''

%o if n >= 0 and n <= 18: # Table 1 in Totaro's paper

%o return [0,0,0,1,1,1,2,3,4,4,5,5,6,7,8,9,10,10,11][n];

%o maxe = int(np.floor(np.log2(n)))

%o for e in range(maxe+1):

%o b = n - 2**e

%o if 2*b - a(b) <= e - 3: # occurs for n = 8, 16, 32, 33, ...

%o return a_typical(n)+1

%o return a_typical(n)

%o # _Skip Garibaldi_, Mar 05 2017

%K easy,nonn

%O 0,7

%A Richard Borcherds (reb(AT)math.berkeley.edu), Jun 28 2004

%E Edited and a(19)-a(49) added by _Skip Garibaldi_, Mar 05 2017

%E More terms from _Michael De Vlieger_, Mar 06 2017