login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-tuples of 0,1,2,3,4,5,6,7,8,9 without consecutive digits.
3

%I #27 Apr 18 2021 02:17:46

%S 1,10,91,828,7534,68552,623756,5675568,51642104,469892512,4275561136,

%T 38903414208,353982925023,3220897542254,29307009588171,

%U 266665052127080,2426390512890816,22077774624328776,200886102122914612

%N Number of n-tuples of 0,1,2,3,4,5,6,7,8,9 without consecutive digits.

%C Sketch of a proof for a general base b >= 2: Let a(n) be the number of n-tuples of 0, 1, ..., b-1 without consecutive digits and s(n,i) the number of them with i (i = 0, 1, ..., b-1) as the last digit. Then it is clear that s(n,i) = a(n-1) - s(n-1, i-1) since when extending a valid n-1-tuple with i those ending with i-1 are not valid as n-tuples.

%C Thus s(n,0) = a(n-1), s(n,1) = a(n-1) - s(n-1,0) = a(n-1) - a(n-2) and in general s(n,i) = a(n-1) - a(n-2) + a(n-3) - ... + (-1)^i*a(n-i-1), i = 0, 1, ..., b-1. Since a(n) = Sum_{j=0..b-1} s(n,j), we get the recursion formula a(n) = b*a(n-1) -( b-1)*a(n-2) + (b-2)*a(n-3) - ... + (-1)^(b-1)*a(n-b).

%H Alois P. Heinz, <a href="/A096261/b096261.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-9,8,-7,6,-5,4,-3,2,-1).

%F a(n) = 10*a(n-1) - 9*a(n-2) + 8*a(n-3) - 7*a(n-4) + 6*a(n-5) - 5*a(n-6) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - 1*a(n-10), a(0)=1, a(n)=0, for n<0.

%F G.f.: 1/(1 - 10*x + 9*x^2 - 8*x^3 + 7*x^4 - 6*x^5 + 5*x^6 - 4*x^7 + 3*x^8 - 2*x^9 + x^10). - _Colin Barker_, Dec 06 2012

%p A096261:=proc(n,b::nonnegint) local s,i; option remember; if n<0 then RETURN(0) fi; if n=0 then RETURN(1) fi; s:=0; for i from 1 to b do s:=s+(-1)^(i-1)*(b-i+1)*A096261(n-i,b); od; end; seq(A096261(i,10),i=0..20);

%t a[n_]:= a[n]= If[n<0, 0, If[n==0, 1, 10a[n-1] -9a[n-2] +8a[n-3] -7a[n-4] +6a[n-5] -5a[n-6] +4a[n-7] -3a[n-8] +2a[n-9] -a[n-10] ]]; Table[ a[n], {n,0,25}] (* _Robert G. Wilson v_, Aug 02 2004 *)

%t LinearRecurrence[{10,-9,8,-7,6,-5,4,-3,2,-1}, {1,10,91,828,7534,68552,623756, 5675568,51642104,469892512}, 30] (* _Harvey P. Dale_, Dec 16 2013 *)

%o (Magma)

%o R<x>:=PowerSeriesRing(Integers(), 30);

%o Coefficients(R!( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) )); // _G. C. Greubel_, Apr 17 2021

%o (Sage)

%o def A096261_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) ).list()

%o A096261_list(30) # _G. C. Greubel_, Apr 17 2021

%Y Case b=3 is A095263.

%Y Column k=10 of A277666.

%K base,nonn,easy

%O 0,2

%A _Seppo Mustonen_, Aug 01 2004

%E More terms from _Robert G. Wilson v_, Aug 02 2004