login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096043 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^9-M)/8, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n. 1

%I

%S 1,10,2,91,30,3,820,364,60,4,7381,4100,910,100,5,66430,44286,12300,

%T 1820,150,6,597871,465010,155001,28700,3185,210,7,5380840,4782968,

%U 1860040,413336,57400,5096,280,8,48427561,48427560,21523356,5580120,930006

%N Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^9-M)/8, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

%e Triangle begins:

%e 1

%e 10 2

%e 91 30 3

%e 820 364 60 4

%e 7381 4100 910 100 5

%e 66430 44286 12300 1820 150 6

%p P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^9-M)/8 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # _Alois P. Heinz_, Oct 07 2009

%t P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 9] - M)/8]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* _Jean-Fran├žois Alcover_, Jan 28 2015, after _Alois P. Heinz_ *)

%Y Cf. A007318. First column gives A002452. Row sums give A016134.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Jun 17 2004

%E Edited with more terms by _Alois P. Heinz_, Oct 07 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 05:51 EDT 2021. Contains 345018 sequences. (Running on oeis4.)