login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse Euler transform of the ordered Bell numbers A000670.
4

%I #13 Nov 21 2022 08:26:17

%S 1,1,2,10,59,446,3965,41098,484090,6390488,93419519,1498268466,

%T 26159936547,494036061550,10035451706821,218207845446062,

%U 5057251219268460,124462048466812950,3241773988588098756,89093816361187396674,2576652694087142999421

%N Inverse Euler transform of the ordered Bell numbers A000670.

%H Alois P. Heinz, <a href="/A095993/b095993.txt">Table of n, a(n) for n = 0..423</a>

%F Product(1/(1-q^n)^(a(n)), n >=1) = sum(A000670(k)*q^k, k>=0).

%F a(n) ~ n! / (2 * log(2)^(n+1)). - _Vaclav Kotesovec_, Oct 09 2019

%p read transforms; A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end; [seq(A000670(i),i=1..30)]; EULERi(%);

%p # The function EulerInvTransform is defined in A358451.

%p a := EulerInvTransform(A000670):

%p seq(a(n), n = 0..22); # _Peter Luschny_, Nov 21 2022

%t max = 25; b[0] = 1; b[n_] := b[n] = Sum[Binomial[n, k]*b[n-k], {k, 1, n}]; bb = Array[b, max]; s = {}; For[i=1, i <= max, i++, AppendTo[s, i*bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; a[0] = 1; a[n_] := Sum[If[Divisible[ n, d], MoebiusMu[n/d], 0]*s[[d]], {d, 1, n}]/n; Table[a[n], {n, 0, max}] (* _Jean-François Alcover_, Feb 25 2017 *)

%Y Cf. A000670, A085686, A095989.

%K nonn

%O 0,3

%A _Mike Zabrocki_, Jul 18 2004

%E a(0)=1 inserted by _Alois P. Heinz_, Feb 20 2017