login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095976
Numbers k such that (largest digit of k) + (largest digit of k+1) is prime.
1
1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 28, 33, 35, 36, 38, 39, 45, 46, 48, 55, 56, 58, 66, 68, 78, 79, 88, 100, 101, 102, 103, 105, 106, 108, 110, 111, 112, 113, 115, 116, 118, 119, 122, 123, 125, 126, 128, 133, 135, 136, 138, 139, 145, 146
OFFSET
1,2
COMMENTS
No terms contain digit 9 before a non-9. - Robert Israel, May 20 2020
LINKS
EXAMPLE
12348 is in the sequence because 8 (its largest digit) plus 9 (the largest digit of 12349) equals 17 (a prime).
MAPLE
N:= 500: # to get terms <= N
L:= map(t -> max(convert(t, base, 10)), [$1..N+1]):
LL:= L[1..-2]+L[2..-1]:
select(t -> member(LL[t], {2, 3, 5, 7, 11, 13, 17}), [$1..N]); # Robert Israel, May 20 2020
MATHEMATICA
ldQ[n_]:=Module[{ldn=Max[IntegerDigits[n]], ldn1=Max[IntegerDigits[ n+1]]}, PrimeQ[ldn+ldn1]]; Select[Range[150], ldQ] (* Harvey P. Dale, Apr 29 2011 *)
PROG
(PARI) isok(m) = isprime(vecmax(digits(m))+vecmax(digits(m+1))); \\ Michel Marcus, May 20 2020
(Python)
def ok(n): return int(max(str(n))) + int(max(str(n+1))) in {2, 3, 5, 7, 11, 13, 17}
print([k for k in range(147) if ok(k)]) # Michael S. Branicky, Aug 03 2022
CROSSREFS
Cf. A054055.
Sequence in context: A028755 A187897 A187319 * A187899 A024609 A167056
KEYWORD
base,easy,nonn
AUTHOR
Jason Earls, Jul 16 2004
STATUS
approved