Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 21 2021 16:32:20
%S 1,3,13,56,241,1037,4462,19199,82609,355448,1529413,6580721,28315366,
%T 121834667,524227237,2255632184,9705479209,41760499493,179686059838,
%U 773148800711,3326685824041,14313982718072,61589856118237,265007332436969,1140267093830134
%N Expansion of (1-x)^2/(1-5*x+3*x^2).
%C a(n) is the number of generalized compositions of n when there are i+2 different types of i, (i=1,2,...). [_Milan Janjic_, Sep 24 2010]
%H P. J. Cameron, <a href="http://dx.doi.org/10.1016/0012-365X(89)90081-2">Some sequences of integers</a>, Discrete Math., 75 (1989), 89-102.
%H P. J. Cameron, <a href="http://dx.doi.org/10.1016/S0167-5060(08)70569-7">Some sequences of integers</a>, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3).
%F a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 3, a(2) = 13.
%t CoefficientList[Series[(1-x)^2/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,3,13},30] (* _Harvey P. Dale_, Jun 21 2021 *)
%o (PARI) a(n)=polcoeff((1-x)^2/(1-5*x+3*x^2)+x*O(x^n),n)
%Y Cf. A003480, A010903, A010920; equals A095939 + A095940.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jul 13 2004