Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jul 04 2023 08:18:27
%S 0,1,1,3,4,6,12,22,38,70,130,237,441,825,1539,2897,5453,10335,19556,
%T 37243,70938,135555,259586,497790,956126,1839597,3544827,6839282,
%U 13212389,25552386,49472951,95883938,186011076,361177503,701906519
%N Number of primes in range [2^n+1, 2^(n+1)] whose binary expansion begins '10' (A080165).
%C I.e., number of primes p such that 2^n < p < (2^n + 2^(n-1)).
%C Ratio a(n)/A036378(n) converges as follows: 0, 0.5, 0.5, 0.6, 0.571429, 0.461538, 0.521739, 0.511628, 0.506667, 0.510949, 0.509804, 0.510776, 0.505734, 0.511787, 0.507921, 0.507444, 0.507303, 0.506866, 0.506173, 0.506115, 0.505487, 0.505395, 0.505318, 0.504951, 0.504786, 0.504588, 0.504437, 0.504301, 0.50415, 0.504016, 0.503887, 0.503763, 0.503654
%C Ratio a(n)/A095766(n) converges as follows: 0, 1, 1, 1.5, 1.333333, 0.857143, 1.090909, 1.047619, 1.027027, 1.044776, 1.04, 1.044053, 1.023202, 1.048285, 1.032193, 1.030228, 1.029645, 1.027847, 1.025001, 1.024764, 1.022191, 1.021815, 1.021501, 1.020003, 1.019331, 1.01852, 1.017908, 1.017353, 1.016737, 1.016195, 1.015669, 1.015164, 1.014723
%C I think this explains also the bias present in ratios shown at A095297, A095298, etc.
%H Antti Karttunen and J. Moyer: <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%H <a href="/index/Pri#primesubsetpop2">Index entries for sequences related to occurrences of various subsets of primes in range ]2^n,2^(n+1)]</a>
%F a(n) = A036378(n)-A095766(n).
%e Table showing the derivation of the initial terms:
%e n 2^n+1 2^(n+1) a(n) primes starting '10' in binary
%e 1 3 4 0 -
%e 2 5 8 1 5 = 101_2
%e 3 9 16 1 11 = 1011_2
%e 4 17 32 3 17 = 10001_2, 19 = 10011_2, 23 = 10111_2
%t a[n_] := PrimePi[2^n + 2^(n - 1) - 1] - PrimePi[2^n];
%t Array[a, 35] (* _Robert G. Wilson v_, Jan 24 2006 *)
%Y Cf. A036378, A080165, A095297, A095298, A095766.
%K nonn
%O 1,4
%A _Antti Karttunen_, Jun 12 2004
%E a(34) and a(35) from _Robert G. Wilson v_, Jan 24 2006
%E Edited, restoring meaning of name, by _Peter Munn_, Jun 27 2023