Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 31 2012 14:02:23
%S 0,0,0,2,5,4,4,15,16,24,33,56,72,95,149,219,322,537,655,998,1309,1859,
%T 2784,3886,5340,8091,10718,16191,22316,30372,43425,63699,88186
%N Number of A095748-primes in range ]2^n,2^(n+1)].
%C Ratio a(n)/A036378(n) converges as follows: 0, 0, 0, 0.4, 0.714286, 0.307692, 0.173913, 0.348837, 0.213333, 0.175182, 0.129412, 0.12069, 0.082569, 0.058933, 0.049175, 0.03836, 0.029956, 0.026336, 0.016954, 0.013562, 0.009328, 0.006931, 0.005419, 0.003942, 0.002819, 0.002219, 0.001525, 0.001194, 0.000852, 0.000599, 0.000442, 0.000335, 0.000239
%C Ratio a(n)/A095753(n) converges as follows: 1, 1, 0, 0.666667, 1, 1, 0.266667, 0.833333, 0.5, 0.727273, 0.52381, 0.691358, 0.605042, 0.659722, 0.582031, 0.688679, 0.611006, 0.839063, 0.63654, 0.779079, 0.58542, 0.724474, 0.651533, 0.718299, 0.646411, 0.762582, 0.635404, 0.767928, 0.657455, 0.704621, 0.636562, 0.71982, 0.646795
%H A. Karttunen, J. Moyer: <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%H <a href="/index/Pri#primesubsetpop2">Index entries for sequences related to occurrences of various subsets of primes in range ]2^n,2^(n+1)]</a>
%Y The penultimate nonzero terms from each row of triangle A095759. Cf. A095757, A095742.
%K nonn
%O 1,4
%A _Antti Karttunen_, Jun 12 2004