login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into generalized pentagonal numbers.
8

%I #25 Dec 10 2017 03:54:25

%S 1,1,2,2,3,4,5,7,8,10,12,14,18,20,25,29,34,40,45,53,60,69,80,89,103,

%T 114,131,147,165,186,207,232,258,286,319,352,392,432,477,525,578,636,

%U 699,765,839,916,1002,1093,1192,1298,1413,1536,1671,1810,1965,2126,2304

%N Number of partitions of n into generalized pentagonal numbers.

%H Seiichi Manyama, <a href="/A095699/b095699.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)

%F G.f.: 1/Product_{k>=1} (1-x^(k*(3*k-1)/2))*(1-x^(k*(3*k+1)/2)).

%t nmax = 100; CoefficientList[Series[1/Product[(1-x^(k*(3*k-1)/2)) * (1-x^(k*(3*k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 10 2017 *)

%o (PARI)

%o b(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8; \\ A001318

%o N=66; x='x+O('x^N);

%o Vec(1/prod(k=1,N, (1-x^b(k))) )

%o \\ _Joerg Arndt_, Oct 13 2014

%Y Cf. A001318, A218379, A290942.

%K nonn

%O 0,3

%A _Jon Perry_, Jul 06 2004