%I #12 Mar 09 2020 05:41:05
%S 27,31,41,47,54,55,62,63,71,73,82,83,91,94,95,97,103,107,108,109,110,
%T 111,121,124,125,126,129,137,142,143,145,146,147,155,159,161,164,165,
%U 166,167,171,175,182,183,188,189,190,193,194,195,199,206,207,214,215
%N Initial values for 3x+1 trajectories of which the largest term is 9232.
%C Altogether 1579 such initial values exist: 27, ..., 9232.
%H Jinyuan Wang, <a href="/A095387/b095387.txt">Table of n, a(n) for n = 1..1579</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F 1579 solutions to A025586(x) = 9232.
%t c[x_]:=c[x]=(1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1);c[1]=1; fpl[x_]:=Delete[FixedPointList[c, x], -1] {ta=Table[0, {1580}], u=1}; Do[If[Equal[Max[fpl[n]], 9232], ta[[u]]=n;u=u+1], {n, 1, 9232}];ta
%Y Cf. A025586.
%K nonn,fini,full
%O 1,1
%A _Labos Elemer_, Jun 14 2004