login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of edges in all trees on n nodes.
0

%I #12 Jul 06 2020 17:06:16

%S 0,1,2,6,12,30,66,161,376,954,2350,6061,15612,41067,108374,289800,

%T 778064,2105739,5723190,15638235,42890100,118098876,326217628,

%U 903897631,2511285360,6994836250,19527701960,54632961864,153147864380,430095282258,1209924870900

%N Total number of edges in all trees on n nodes.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphEdge.html">Graph Edge</a>

%F a(n) = (n-1)*A000055(n). - _Vladeta Jovovic_, Jun 05 2004

%F O.g.f.: x^2 d/dx(A(x)-1)/x where A(x) is the o.g.f. for A000055. - _Geoffrey Critzer_, Jul 06 2020

%t nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[

%t f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];

%t r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; Drop[Level[CoefficientList[

%t Series[x^2 D[1/x (r[x] - 1/2 (r[x]^2 - r[x^2])), x], {x, 0, nn}],

%t x], {2}], 1] (* _Geoffrey Critzer_, Jul 06 2020 *)

%Y Cf. A055543.

%K nonn

%O 1,3

%A _Eric W. Weisstein_, Jun 03 2004