Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 27 2024 03:52:27
%S 1,3,1,1,2,1,3,2,3,1,1,3,3,1,1,2,1,3,1,1,3,1,1,2,1,3,2,3,1,1,2,1,3,1,
%T 1,2,1,3,2,3,1,1,3,3,1,1,2,1,3,2,3,1,1,2,1,3,2,3,1,1,3,3,1,1,2,1,3,1,
%U 1,3,1,1,2,1,3,2,3,1,1,3,3,1,1,2,1,3,2,3,1,1,3,3,1,1,2,1,3,1,1,3,1,1
%N Length of n-th run of identical symbols in A095076 and A095111.
%C Conjecture: it appears that the asymptotic frequencies of terms 1, 2 and 3 are 1/2, 1/(2*phi^2) and 1/(2*phi) respectively, where phi = (1+sqrt(5))/2 is the golden ratio. - _Vladimir Reshetnikov_, Mar 17 2022
%C For a proof of this conjecture see my link to a095276.pdf. - _Michel Dekking_, Jun 25 2024
%H Amiram Eldar, <a href="/A095276/b095276.txt">Table of n, a(n) for n = 1..10000</a>
%H Michel Dekking, <a href="/A095276/a095276.pdf">Proof of conjecture on frequencies</a>
%F (a(n)) is a morphic sequence. Let y = GDAEABFA... be the unique fixed point of the morphism rho given by rho(A) = B, rho(B) =C, rho(C) = F, rho(D) = EA, rho(E) = FA, rho(F) = GA, rho(G) = GDA on the alphabet {A,B,C,D,E,F,G}. Then (a(n+1)) is the image of y under the morphism A->11, B->21, C->32, D->23, E->33, F->3113, G->311213. - _Michel Dekking_, Jun 25 2024
%t Length /@ Split[Mod[DigitCount[Select[Range[0, 1500], BitAnd[#, 2 #] == 0 &], 2, 1], 2]] (* _Amiram Eldar_, Feb 07 2023 *)
%Y Partials sums: A095279.
%Y Cf. A001622, A026465, A095076, A095111.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jun 01 2004