login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(Concatenation of first n primes) modulo prime(n).
3

%I #9 May 30 2018 12:31:35

%S 0,2,0,5,3,7,15,16,21,27,7,11,17,21,37,7,28,10,50,70,70,23,46,20,76,

%T 93,81,52,1,58,87,54,100,128,39,10,117,16,42,89,98,61,135,123,13,89,

%U 201,147,124,176,186,202,71,74,256,228,137,84,145

%N (Concatenation of first n primes) modulo prime(n).

%H Harvey P. Dale, <a href="/A095245/b095245.txt">Table of n, a(n) for n = 0..1000</a>

%e The concatenation of the first 3 primes is 235. The third prime is 5. Therefore a(3) = 235 mod 5 = 0.

%t a = {2}; b = {0}; For[n = 2, n < 100, n++, a = Flatten[Join[a, IntegerDigits[ Prime[n]]] ]; AppendTo[b, Mod[FromDigits[a], Prime[n]]]]; b

%t Table[Mod[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],Prime[n]],{n,60}] (* _Harvey P. Dale_, May 30 2018 *)

%Y Cf. A095243.

%K base,nonn,less

%O 0,2

%A _Amarnath Murthy_, Jun 17 2004

%E Edited, corrected and extended by _Stefan Steinerberger_, Jun 26 2007