OFFSET
1,2
COMMENTS
Conjecture: There are infinitely many primes in this sequence.
The sequence would have been a little nicer if the even terms had a minus one and the odd a plus one, so the first term would not have to be an exception.
Except for the first two terms, it appears that a(n) are the first differences of A002467. - Carl Najafi, Sep 27 2018
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..100
FORMULA
a(n) = (n+1)! - floor(((n+1)!+1)/e) - n! + floor((n!+1)/e), n > 1. - Gary Detlefs, Nov 07 2010
MAPLE
Digits:=100: a:=n->factorial(n+1)-floor((factorial(n+1)+1)/exp(1))-factorial(n)+floor((factorial(n)+1)/exp(1)): 1, seq(a(n), n=2..20); # Muniru A Asiru, Sep 28 2018
PROG
(PARI) a=vector(100) s=1 for(i=2, 100, if(Mod(i, 2)==0, a[i]=s*i+1, a[i]=s*i-1); s+=a[i])
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 13 2004
EXTENSIONS
Edited by Johan Claes, Jun 16 2004
STATUS
approved