login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+3) = 3*a(n+2) + 2*a(n+1) - a(n).
4

%I #19 Sep 08 2022 08:45:13

%S 1,4,13,46,160,559,1951,6811,23776,82999,289738,1011436,3530785,

%T 12325489,43026601,150199996,524327701,1830356494,6389524888,

%U 22304959951,77863573135,271811114419,948855529576,3312325244431,11562875678026,40364421993364,140906692091713

%N a(n+3) = 3*a(n+2) + 2*a(n+1) - a(n).

%C A sequence generated from an inverse Bell matrix, M.

%C a(n)/a(n-1) tends to 3.4908636153..., which is a root of x^3 - 3*x^2 - 2*x + 1 and an eigenvalue of M. A095127 is generated from the reflected polynomial: x^3 - 2*x^2 - 3*x + 1 and the inverse matrix of M. Bell numbers are sums of row terms of the 3rd-order Stirling number of the second kind matrix shown on p. 171 of Aldrovandi, the matrix being [1 0 0 / 1 1 0 / 1 3 1]. Rotations, or inverses, or related polynomials generate A095125, A095126, A095127, A095128.

%D R. Aldrovandi, "Special Matrices of Mathematical Physics", World Scientific, 2001, section 13.3.1, "Inverting Bell Matrices", p. 171.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-1).

%F Invert the matrix used to generate A095127, getting M = [3 2 -1 / 1 0 0 / 0 1 0]. Then M^n * [1 1 1] = [p q r] where a(n) = the center term q.

%F G.f.: (-x^2+x+1)/(x^3-2*x^2-3*x+1). - _Harvey P. Dale_, Dec 14 2012

%e a(6) = 559 = 3*a(5) + 2*a(4) - a(3) = 3*160 + 2*46 - 13.

%e a(4) = 46 since M^4 * [1 1 1] = [160 46 13] = [a(5) a(4) a(3)].

%t a[n_] := (MatrixPower[{{3, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n].{{1}, {1}, {1}})[[2, 1]]; Table[ a[n], {n, 24}] (* _Robert G. Wilson v_, Jun 01 2004 *)

%t LinearRecurrence[{3,2,-1},{1,4,13},30] (* _Harvey P. Dale_, Dec 14 2012 *)

%o (Magma) I:=[1,4,13]; [n le 3 select I[n] else 3*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Jul 25 2015

%Y Cf. A095125, A095126, A095127.

%K nonn

%O 1,2

%A _Gary W. Adamson_, May 29 2004

%E Edited and extended by _Robert G. Wilson v_, Jun 01 2004

%E a(25)-a(27) from _Vincenzo Librandi_, Jul 25 2015