%I #16 Nov 10 2021 17:07:43
%S 3,5,11,13,29,37,47,71,73,79,89,97,107,113,131,139,149,157,173,181,
%T 191,199,223,233,241,251,257,283,293,317,359,367,401,409,419,443,461,
%U 479,487,503,521,547,563,571,587,613,631,647,673,683,691,733
%N Fib00 primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with two zeros.
%H A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%o (Python)
%o from sympy import fibonacci, primerange
%o def a(n):
%o k=0
%o x=0
%o while n>0:
%o k=0
%o while fibonacci(k)<=n: k+=1
%o x+=10**(k - 3)
%o n-=fibonacci(k - 1)
%o return x
%o def ok(n): return str(a(n))[-2:]=="00"
%o print([n for n in primerange(1, 1001) if ok(n)]) # _Indranil Ghosh_, Jun 08 2017
%o (PARI) list(lim)=my(v=List(), w=quadgen(20), phi=(1+w)/2, p2=phi^2, x=(2*phi-2)*p2, q); lim=lim\1+1; while(x<lim, if(isprime(q=x\1), listput(v,q)); x+=p2); Vec(v) \\ _Charles R Greathouse IV_, Nov 10 2021
%Y Cf. A095062. Intersection of A000040 and A026274. Union of A095085 and A095088.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 01 2004