Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 10 2021 17:07:43
%S 3,5,11,13,29,37,47,71,73,79,89,97,107,113,131,139,149,157,173,181,
%T 191,199,223,233,241,251,257,283,293,317,359,367,401,409,419,443,461,
%U 479,487,503,521,547,563,571,587,613,631,647,673,683,691,733
%N Fib00 primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with two zeros.
%H A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%o (Python)
%o from sympy import fibonacci, primerange
%o def a(n):
%o k=0
%o x=0
%o while n>0:
%o k=0
%o while fibonacci(k)<=n: k+=1
%o x+=10**(k - 3)
%o n-=fibonacci(k - 1)
%o return x
%o def ok(n): return str(a(n))[-2:]=="00"
%o print([n for n in primerange(1, 1001) if ok(n)]) # _Indranil Ghosh_, Jun 08 2017
%o (PARI) list(lim)=my(v=List(), w=quadgen(20), phi=(1+w)/2, p2=phi^2, x=(2*phi-2)*p2, q); lim=lim\1+1; while(x<lim, if(isprime(q=x\1), listput(v,q)); x+=p2); Vec(v) \\ _Charles R Greathouse IV_, Nov 10 2021
%Y Cf. A095062. Intersection of A000040 and A026274. Union of A095085 and A095088.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 01 2004