The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095071 Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's. 5
 17, 67, 73, 97, 131, 137, 193, 257, 263, 269, 277, 281, 293, 337, 353, 389, 401, 449, 521, 523, 547, 577, 593, 641, 643, 673, 769, 773, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1091, 1093, 1097, 1109, 1123, 1129, 1153, 1163, 1171 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..20000 A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence EXAMPLE 73 is in the sequence because 73 is a prime and 73_10 = 1001001_2. '1001001' has four 0's and one 1. - Indranil Ghosh, Jan 31 2017 MATHEMATICA Reap[Do[p=Prime[k]; id=IntegerDigits[p, 2]; n=Length@id; If[Count[id, 0]>n/2, Sow[p]], {k, 200}]][[2, 1]] (* Zak Seidov *) PROG (PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0; for(i = 0, nB, if(bittest(x, i), b1++; , b0++; ); ); if(b0 > b1, return(1); , return(0); ); }; forprime(x = 2, 1171, if(B(x), print1(x, ", "); ); ); \\ Washington Bomfim, Jan 11 2011 (PARI){forprime(p=2, 1171, nB=floor(log(p)/log(2)); sum(i=0, nB, bittest(p, i))<=nB/2&print1(p, ", "))} \\ Zak Seidov, Jan 11 2011 (Python) #Program to generate the b-file from sympy import isprime i=1 j=1 while j<=20000: ....if isprime(i)==True and bin(i)[2:].count("0")>bin(i)[2:].count("1"): ........print str(j)+" "+str(i) ........j+=1 ....i+=1 # Indranil Ghosh, Jan 31 2017 CROSSREFS Complement of A095074 in A000040. Subset: A095072. Cf. A095019. Sequence in context: A031432 A157474 A024215 * A095072 A180529 A214032 Adjacent sequences:  A095068 A095069 A095070 * A095072 A095073 A095074 KEYWORD nonn,base,easy AUTHOR Antti Karttunen, Jun 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 13:39 EDT 2020. Contains 337380 sequences. (Running on oeis4.)