Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 16 2022 14:53:54
%S 1,2,2,3,2,4,2,4,3,4,1,5,2,4,3,5,2,6,2,5,4,2,3,6,3,4,5,5,3,6,2,6,2,5,
%T 4,7,3,5,3,6,2,6,3,3,5,5,3,6,4,4,4,6,3,9,2,7,5,5,3,7,2,4,6,6,4,4,3,7,
%U 5,7,2,8,3,5,5,8,2,7,3,7,6,4,3,7,4,6,6,4,3,9,4,6,3,5,3,7,3,6,3,5,2,8
%N Number of distinct digits needed to write all positive divisors of n in decimal representation.
%C a(n) <= 10, a(A095050(n)) = 10.
%C a(A206159(n)) <= 2. - _Reinhard Zumkeller_, Feb 05 2012
%C Almost all (in the sense of natural density) terms of this sequence are equal to 10. - _Charles R Greathouse IV_, Nov 16 2022
%H Reinhard Zumkeller, <a href="/A095048/b095048.txt">Table of n, a(n) for n = 1..10000</a>
%e Set of divisors of n=10: {1,2,5,10}, therefore a(10) = #{0,1,2,5} = 4.
%e Set of divisors of n=16: {1,2,4,8,16}, therefore a(16)=#{1,2,4,6,8} = 5.
%p A095048 := proc(n)
%p local digset ;
%p digset := {} ;
%p for d in numtheory[divisors](n) do
%p digset := digset union convert(convert(d,base,10),set) ;
%p end do:
%p nops(digset) ;
%p end proc:
%p seq(A095048(n),n=1..80) ; # _R. J. Mathar_, May 13 2022
%o (Haskell)
%o import Data.List (group, sort)
%o a095048 = length . group . sort . concatMap show . a027750_row
%o -- _Reinhard Zumkeller_, Feb 05 2012
%o (Python)
%o from sympy import divisors
%o def a(n):
%o s = set("1"+str(n))
%o if len(s) == 10: return 10
%o for d in divisors(n, generator=True):
%o s |= set(str(d))
%o if len(s) == 10: return 10
%o return len(s)
%o print([a(n) for n in range(1, 99)]) # _Michael S. Branicky_, Nov 16 2022
%o (PARI) a(n) = my(d = divisors(n), s = 0); for(i = 1, #d, v = digits(d[i]); for(j = 1, #v, s = bitor(s, 1<<v[j]); if(s == 1023, return(10)))); hammingweight(s) \\ _David A. Corneth_, Nov 16 2022
%Y Cf. A095049, A095050, A043537.
%Y Cf. A027750, A059436.
%K nonn,base
%O 1,2
%A _Reinhard Zumkeller_, May 28 2004