login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) read by rows: number of rises (drops) in the compositions of n with m parts, m>=2.
5

%I #9 Dec 03 2018 05:06:32

%S 1,1,2,2,4,3,2,8,9,4,3,12,21,16,5,3,18,39,44,25,6,4,24,66,96,80,36,7,

%T 4,32,102,184,200,132,49,8,5,40,150,320,430,372,203,64,9,5,50,210,520,

%U 830,888,637,296,81,10,6,60,285,800,1480,1884,1673,1024,414,100,11,6

%N Triangle T(n,m) read by rows: number of rises (drops) in the compositions of n with m parts, m>=2.

%H S. Heubach and T. Mansour, <a href="https://arxiv.org/abs/math/0310197">Counting rises, levels and drops in compositions</a>, arXiv:math/0310197 [math.CO], 2003.

%F G.f. of m-th column: [(m-1)x^(m+1)]/[(1+x)(1-x)^m].

%e 1

%e 1 2

%e 2 4 3

%e 2 8 9 4

%e 3 12 21 16 5

%e 3 18 39 44 25 6

%e 4 24 66 96 80 36 7

%t T[n_, m_] := SeriesCoefficient[(m-1)x^(m+1)/(1+x)/(1-x)^m, {x, 0, n+1}];

%t Table[T[n, m], {n, 2, 13}, {m, 2, n}] // Flatten (* _Jean-François Alcover_, Dec 03 2018 *)

%o (PARI) T(n,m)=polcoeff((m-1)*x^(m+1)/(1+x)/(1-x)^m,n)

%Y Columns 2-4 (+-offset) are A004526, A007590, A007518.

%Y Row sums are A045883, diagonals include n, n^2, (n-1)(n^2-n+2)/2, (n-1)^2(n^+n+6), etc.

%Y Cf. A045927.

%K nonn,tabl

%O 2,3

%A _Ralf Stephan_, May 26 2004