Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 15 2019 09:02:48
%S 5,6,8,4,8,4,12,10,4,14,4,4,12,14,8,4,14,4,6,14,8,16,14,2,4,8,4,20,28,
%T 0,10,8,20,0,16,10,8,14,8,8,20,0,8,12,34,16,0,4,12,10,8,24,8,12,8,4,
%U 14,4,10,32,22,0,4,20,30,8,16,0,12,16,16,10,10,8,16,14,8,22,14,4,20,0,14,8
%N A measure of the excess of the mean of the set of 4 consecutive primes over the 2nd of the set.
%C Let (prime(n-3)+prime(n-2)+prime(n-1)+prime(n))/4 = A034963(n-3)/4 be the arithmetic mean of 4 consecutive primes, and prime(n-2) the third largest. Then A034963(n-3)-4*prime(n-2) is an integer measure of the excess of the mean. We define a(n) by the excess if positive, else by 0.
%p A094931 := proc(n)
%p local p3,p2,p1,p0 ;
%p p3 := ithprime(n-3) ;
%p p2 := ithprime(n-2) ;
%p p1 := ithprime(n-1) ;
%p p0 := ithprime(n) ;
%p max(p3-3*p2+p1+p0,0) ;
%p end proc:
%p seq(A094931(n),n=4..50) ; # _R. J. Mathar_, Nov 15 2019
%t a=Table[If[(Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/4-Prime[n-2]>0, 4*((Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/4-Prime[n-2]), 0], {n, 4, 204}]
%t If[#<=0,0,#]&/@(4(Total[#]/4-#[[2]])&/@Partition[Prime[Range[90]],4,1]) (* _Harvey P. Dale_, Mar 02 2015 *)
%Y Cf. A034963.
%K nonn,less
%O 4,1
%A _Roger L. Bagula_, Jun 17 2004