login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5^n-1)/4 mod n.
3

%I #13 May 19 2020 19:13:09

%S 0,0,1,0,1,0,1,0,4,6,1,0,1,6,1,0,1,0,1,16,10,6,1,0,6,6,13,16,1,6,1,0,

%T 31,6,11,0,1,6,31,16,1,0,1,24,31,6,1,0,29,6,31,0,1,0,11,48,31,6,1,36,

%U 1,6,31,0,1,12,1,20,31,16,1,0,1,6,31,4,39,6,1,16,40,6,1,0,16,6,31,64,1,36,57,64

%N a(n) = (5^n-1)/4 mod n.

%H Antti Karttunen, <a href="/A094920/b094920.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A094920/a094920.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%t Table[Mod[(5^n-1)/4,n],{n,100}] (* _Harvey P. Dale_, Sep 20 2016 *)

%o (PARI) A094920(n) = lift(Mod((5^n-1)/4,n)); \\ _Antti Karttunen_, May 19 2020

%Y Cf. A003463.

%K nonn

%O 1,9

%A _N. J. A. Sloane_, Jun 18 2004