login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094870 a(1)=1; for n>1 a(n) is the minimal positive integer t not equal to a(1), ..., a(n-1) such that t-a(n-i) is not equal to a(n-i)-a(n-2i) for all 1<=i<n/2. 10
1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 12, 14, 11, 17, 16, 22, 15, 23, 18, 21, 20, 25, 24, 26, 19, 28, 27, 29, 36, 32, 31, 33, 39, 38, 34, 41, 30, 37, 35, 44, 48, 42, 40, 43, 50, 46, 52, 47, 45, 54, 49, 56, 58, 57, 51, 61, 53, 59, 63, 60, 68, 64, 62, 70, 55, 65, 67, 73, 69, 83, 76 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

3n/8 <= a(n) < 3n/2 (P. Hegarty).

Conjecture: lim_{n->infinity} a(n)/n = 1 (P. Hegarty).

The Hegarty paper shows that this is a permutation. - Franklin T. Adams-Watters, May 26 2014

LINKS

Carl R. White, Table of n, a(n) for n = 1..10000

Peter Hegarty, Permutations avoiding arithmetic patterns, The Electronic Journal of Combinatorics, 11 (2004), #R39.

Index entries related to non-averaging sequences

EXAMPLE

a(3)=4 because it can't be 1=a(1), 2=a(2) and 3=2*a(3-1)-a(3-2).

MAPLE

A:=proc(n) option remember; local t, S, i; S:={$1..1000} minus {seq(A(i), i=1..n-1)}; t:=min(S[]); i:=1; while i<floor((n+1)/2) do if t-A(n-i)=A(n-i)-A(n-2*i) then S:=S minus {t}; t:=min(S[]); i:=1 else i:=i+1 fi od; t end: A(1):=1: seq(A(n), n=1..200);

CROSSREFS

Cf. A095689 (inverse permutation).

Sequence in context: A133256 A259570 A095690 * A075618 A095689 A083194

Adjacent sequences:  A094867 A094868 A094869 * A094871 A094872 A094873

KEYWORD

easy,nonn

AUTHOR

Alec Mihailovs (alec(AT)mihailovs.com), Jun 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)