login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of digits is divisible by 10.
4

%I #21 Oct 13 2022 11:42:13

%S 19,28,37,46,55,64,73,82,91,109,118,127,136,145,154,163,172,181,190,

%T 208,217,226,235,244,253,262,271,280,299,307,316,325,334,343,352,361,

%U 370,389,398,406,415,424,433,442,451,460,479,488,497,505,514,523,532,541

%N Sum of digits is divisible by 10.

%C a(n) = A052224(n) for n = 1..28. - _Reinhard Zumkeller_, Nov 08 2015

%C A syndetic set: a(n+1) - a(n) <= 19. (This gap size occurs infinitely often.) - _Charles R Greathouse IV_, Oct 13 2022

%H Reinhard Zumkeller, <a href="/A094677/b094677.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n)=10n+r(n) where r(n) takes values in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

%e G.f. = 19*x + 28*x^2 + 37*x^3 + 46*x^4 + 55*x^5 + 64*x^6 + 73*x^7 + 82*x^8 + ... - _Michael Somos_, Jun 09 2019

%t a[ n_] := If[ n < 1, 0, 10 n + Mod[-Total@IntegerDigits[n], 10]]; (* _Michael Somos_, Jun 09 2019 *)

%o (PARI) isok(n) = !(sumdigits(n) % 10); \\ _Michel Marcus_, Dec 07 2013

%o (PARI) {a(n) = if( n<1, 0, 10*n + (-sumdigits(n))%10)}; /* _Michael Somos_, Jun 09 2019 */

%o (Haskell)

%o a094677 n = a094677_list !! (n-1)

%o a094677_list = filter ((== 0) . flip mod 10 . a007953) [1..]

%o -- _Reinhard Zumkeller_, Nov 08 2015

%Y Cf. A007953, A052224.

%K base,nonn,easy

%O 1,1

%A _Benoit Cloitre_, Jun 07 2004