%I #10 Mar 11 2023 17:18:26
%S 1393,8119,47321,275807,1607521,54608393,318281039,1855077841,
%T 10812186007,367296043199,2140758220993,12477253282759,72722761475561,
%U 423859315570607,2470433131948081,14398739476117879,83922003724759193
%N Composite NSW numbers.
%H J. A. Sellers, <a href="http://www.math.psu.edu/sellersj/p24.pdf">Infinitely Many Composite NSW Numbers: An Inductive Proof</a>
%H J. A. Sellers and H. Williams, <a href="http://www.math.psu.edu/sellersj/p16.pdf">On the Infinitude of Composite NSW Numbers</a>
%t a[0] = 1; a[1] = 7; a[n_] := a[n] = 6a[n - 1] - a[n - 2]; a /@ Select[ Range[23], !PrimeQ[ a[ # ]] &] (* _Robert G. Wilson v_, Jun 09 2004 *)
%t nxt[{a_,b_}]:={b,6b-a}; Select[NestList[nxt,{1,7},30][[;;,1]],CompositeQ] (* _Harvey P. Dale_, Mar 11 2023 *)
%Y Cf. A002315, A088165.
%K nonn
%O 1,1
%A _Lekraj Beedassy_, Jun 07 2004
%E More terms from _Robert G. Wilson v_, Jun 09 2004