login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numerators of the sums of the ratios of consecutive primes.
1

%I #12 Jun 01 2018 12:12:09

%S 3,19,137,1289,4975049,

%T 19374829215705183817985416854342477445596764166957007

%N Prime numerators of the sums of the ratios of consecutive primes.

%C Sum of reciprocals = 0.3941031881461705902079511494...

%C The next term, A094661(53) ~ 1.497*10^100, is too large to include.

%C It might be preferable to record the index of these primes in A094661: a(n)=A094661(b(n)) with b=(1,2,3,4,7,32,53,55,94,183,189,...). - _M. F. Hasler_, Mar 06 2009

%F A094662 = A094661 intersect A000040.

%e 3/2 + 5/3 + 7/5 + 11/7 + 13/11 + 17/13 + 19/17 = 4975049/510510. 4975049 is prime, the fifth entry in the sequence.

%t Select[Numerator[Accumulate[#[[2]]/#[[1]]&/@Partition[Prime[Range[ 100]], 2,1]]],PrimeQ] (* _Harvey P. Dale_, Jun 01 2018 *)

%o (PARI) consecpr(n) = { s=0; y=0; forprime(x=2,n, y+=nextprime(x+1)/x; z=numerator(y); s+=1./z; if(isprime(z),print1(z",")) ); print(); print(s) }

%o (PARI) s=0; for( i=1,999, isprime(numerator(s+=prime(i+1)/prime(i))) & print1(numerator(s)",")) \\ _M. F. Hasler_, Mar 06 2009

%K frac,nonn

%O 1,1

%A _Cino Hilliard_, Jun 06 2004

%E Corrected and edited by _M. F. Hasler_, Mar 07 2009