The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094620 Expansion of x*(11 + 22*x + 20*x^2)/((1-x)*(1+x)*(1 - 10*x^2)). 3
 0, 11, 22, 141, 242, 1441, 2442, 14441, 24442, 144441, 244442, 1444441, 2444442, 14444441, 24444442, 144444441, 244444442, 1444444441, 2444444442, 14444444441, 24444444442, 144444444441, 244444444442, 1444444444441, 2444444444442, 14444444444441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Previous name: "A palindromic sequence whose n-th term digits sum to 2n. (See Formula for definition.)" a(0) = 0; for n > 0, a(n) is the k-digit number having 1 (for odd n) or 2 (for even n) as its first and last digits, and 4 for each of the remaining k-2 digits, where k = floor((n+3)/2). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,11,0,-10). FORMULA a(n) = 10^(n/2)*(11/9 + 13*sqrt(10)/18 + (11/9 - 13*sqrt(10)/18)*(-1)^n) + (-1)^n/2 - 53/18. a(n) = (A094621(n) + A094622(n))/2. From Colin Barker, Nov 19 2016: (Start) a(n) = 11*a(n-2) - 10*a(n-4) for n > 3. G.f.: x*(11 + 22*x + 20*x^2) / ((1 - x)*(1 + x)*(1 - 10*x^2)). (End) MATHEMATICA LinearRecurrence[{0, 11, 0, -10}, {0, 11, 22, 141}, 50] (* G. C. Greubel, Nov 20 2016 *) PROG (PARI) concat(0, Vec(x*(11 + 22*x + 20*x^2) / ((1 - x)*(1 + x)*(1 - 10*x^2)) + O(x^30))) \\ Colin Barker, Nov 19 2016 CROSSREFS Sequence in context: A061852 A083511 A067894 * A077431 A118133 A345404 Adjacent sequences: A094617 A094618 A094619 * A094621 A094622 A094623 KEYWORD easy,nonn,base AUTHOR Paul Barry, May 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)