login
A094596
Number of solutions to the Lebesgue-Nagell equation x^2 + n = y^k with k > 2.
3
1, 0, 2, 0, 0, 7, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 2, 2, 1, 0, 0, 3, 0, 1, 2, 1, 8, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 5, 3, 2, 0, 0, 0, 3, 1, 3, 2, 0, 0, 0, 6, 1, 0, 5, 3, 1, 0, 1, 0, 0, 0, 4, 2, 0, 2, 0, 2, 1, 0, 2, 1, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 0, 2, 1, 1, 0, 1, 4
OFFSET
2,3
COMMENTS
Bugeaud, Mignotte and Siksek find all solutions for n <= 100.
EXAMPLE
a(4) = 2 because there are two solutions: 2^2+4=2^3 and 11^2+4=5^3.
MATHEMATICA
Table[cnt=0; Do[x=Sqrt[y^k-n]; If[IntegerQ[x], cnt++ ], {k, 3, 20}, {y, 600}]; cnt, {n, 2, 100}]
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
T. D. Noe, May 13 2004
STATUS
approved