login
Primes p such that 2^j+p^j are primes for j=0,1,4,32.
1

%I #6 Jun 13 2015 20:56:21

%S 59,5417,19079,33827,136949,181871,242519,284897,421607,452537,552401,

%T 598187,962681,1068251,1081979,1163231,1317761,1760279,1801361,

%U 1891499,1895081,1919459,2056907,2131601,2427461,2557601,2579177,2826737

%N Primes p such that 2^j+p^j are primes for j=0,1,4,32.

%H Harvey P. Dale, <a href="/A094489/b094489.txt">Table of n, a(n) for n = 1..400</a>

%e For j=0 1+1=2 is prime; also terms should be lesser-twin-primes

%e because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as

%e follows: prime=p^4+16 and prime=2^32+p^32.

%t {ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s8=2^32+Prime[j]^32; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]

%t Select[Prime[Range[210000]],AllTrue[{2+#,16+#^4,2^32+#^32},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jun 13 2015 *)

%Y Cf. A082101, A094473-A094488.

%K nonn

%O 1,1

%A _Labos Elemer_, Jun 01 2004