login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094438
Triangular array T(n,k) = Fibonacci(k+3)*C(n,k), k=0..n, n>=0.
10
2, 2, 3, 2, 6, 5, 2, 9, 15, 8, 2, 12, 30, 32, 13, 2, 15, 50, 80, 65, 21, 2, 18, 75, 160, 195, 126, 34, 2, 21, 105, 280, 455, 441, 238, 55, 2, 24, 140, 448, 910, 1176, 952, 440, 89, 2, 27, 180, 672, 1638, 2646, 2856, 1980, 801, 144, 2, 30, 225, 960, 2730, 5292, 7140, 6600, 4005, 1440, 233
OFFSET
0,1
COMMENTS
Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+3) and n-th alternating row sum is F(n-3).
FORMULA
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = Fibonacci(n-3). (End)
EXAMPLE
First few rows:
2;
2 3;
2 6 5;
2 9 15 8;
2, 12, 30, 32, 13;
2, 15, 50, 80, 65, 21;
MAPLE
with(combinat); seq(seq(fibonacci(k+3)*binomial(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Table[Fibonacci[k+3]Binomial[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 16 2017 *)
PROG
(PARI) T(n, k) = binomial(n, k)*fibonacci(k+3);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 30 2019
(Magma) [Binomial(n, k)*Fibonacci(k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
(Sage) [[binomial(n, k)*fibonacci(k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*Fibonacci(k+3) ))); # G. C. Greubel, Oct 30 2019
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, May 03 2004
STATUS
approved