login
A094438
Triangular array T(n,k) = Fibonacci(k+3)*C(n,k), k=0..n, n>=0.
10
2, 2, 3, 2, 6, 5, 2, 9, 15, 8, 2, 12, 30, 32, 13, 2, 15, 50, 80, 65, 21, 2, 18, 75, 160, 195, 126, 34, 2, 21, 105, 280, 455, 441, 238, 55, 2, 24, 140, 448, 910, 1176, 952, 440, 89, 2, 27, 180, 672, 1638, 2646, 2856, 1980, 801, 144, 2, 30, 225, 960, 2730, 5292, 7140, 6600, 4005, 1440, 233
OFFSET
0,1
COMMENTS
Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+3) and n-th alternating row sum is F(n-3).
FORMULA
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = Fibonacci(n-3). (End)
EXAMPLE
First few rows:
2;
2 3;
2 6 5;
2 9 15 8;
2, 12, 30, 32, 13;
2, 15, 50, 80, 65, 21;
MAPLE
with(combinat); seq(seq(fibonacci(k+3)*binomial(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Table[Fibonacci[k+3]Binomial[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 16 2017 *)
PROG
(PARI) T(n, k) = binomial(n, k)*fibonacci(k+3);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 30 2019
(Magma) [Binomial(n, k)*Fibonacci(k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
(Sage) [[binomial(n, k)*fibonacci(k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*Fibonacci(k+3) ))); # G. C. Greubel, Oct 30 2019
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, May 03 2004
STATUS
approved