%I
%S 5,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N A094283(n+1)/A094283(n).
%C From n >= 4 onward a(n) = 2. Outline of the proof by AK: As the sequence A094282 is forced to grow approximately like 2^n, it implies that the other terms in A094280 never "catch" the terms in A094282 and as the sum of the other elements on the nth row of A094280 grows just polynomially (Cf. A006003), their contribution to the row sum is soon minimal and A094282 (with A094282(n+1)/A094282(n) tending to the limit 2, as n > inf) defines solely the behavior of this sequence.
%Y Cf. A094280, A094281, A094282, A094283.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Apr 27 2004
%E Edited and extended by _Antti Karttunen_, Aug 25 2006
