Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jun 17 2022 03:41:57
%S 0,1,0,2,1,2,0,1,0,4,3,4,2,3,2,4,3,4,0,1,0,2,1,2,0,1,0,8,7,8,6,7,6,8,
%T 7,8,4,5,4,6,5,6,4,5,4,8,7,8,6,7,6,8,7,8,0,1,0,2,1,2,0,1,0,4,3,4,2,3,
%U 2,4,3,4,0,1,0,2,1,2,0,1,0,16,15,16,14,15,14,16,15,16,12,13,12,14,13,14,12
%N a(n) = -Sum_{i=1..n-1} (-1)^i*2^valuation(i,3).
%H Rémy Sigrist, <a href="/A094114/b094114.txt">Table of n, a(n) for n = 1..6561</a>
%H Robert Ferréol (MathCurve), <a href="https://mathcurve.com/fractals/cantor/cantor.shtml">Cantor's (ternary) set</a> [in French]
%p a:= n-> -add((-1)^i*2^padic[ordp](i, 3), i=1..n-1):
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jan 05 2021
%t a[n_] := Sum[(-1)^(i+1) * 2^IntegerExponent[i, 3], {i, 1, n-1}]; Array[a, 100] (* _Amiram Eldar_, Jun 17 2022 *)
%o (PARI) a(n)=-sum(i=1,n-1,(-1)^i*2^valuation(i,3))
%Y Cf. A007949, A093347.
%K nonn
%O 1,4
%A _Benoit Cloitre_, May 03 2004