login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients arising in combinatorial field theory.
4

%I #24 Oct 09 2023 11:19:08

%S 1,6,50,615,10192,214571,5544394,171367020,6208928376,259542887975,

%T 12356823485580,662921411131909,39714830070598204,2636484537372437498,

%U 192653800829700013970,15405383160836582657251

%N Coefficients arising in combinatorial field theory.

%D P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).

%H P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, <a href="http://arXiv.org/abs/quant-ph/0405103">Combinatorial field theories via boson normal ordering</a>, arXiv:quant-ph/0405103, 2004-2006.

%F a(n) = B(n+1)*Sum_{k=1..n+1} binomial(n+1, k)*k^(n+1-k), where B(n) are the Bell numbers (A000110). - _Emeric Deutsch_, Nov 23 2004

%F E.g.f.: exp(-1)*Sum_{k>=0} exp(k*x*exp(k*x))/k!. - _Vladeta Jovovic_, Sep 26 2006

%p with(combinat): seq(bell(n+1)*sum(k^(n+1-k)*binomial(n+1,k),k=1..n+1),n=0..18);

%t Table[BellB[n+1]Sum[Binomial[n+1,k]k^(n+1-k),{k,n+1}],{n,0,20}] (* _Harvey P. Dale_, Feb 05 2015 *)

%Y Cf. A000085, A005425, A094070, A094071, A094073, A094074.

%Y Cf. A000110.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, May 01 2004

%E More terms from _Emeric Deutsch_, Nov 23 2004