login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected 4-element antichains on a labeled n-set.
3

%I #16 Oct 13 2017 15:49:24

%S 0,0,0,0,20,1655,65305,1794730,40179930,793030245,14423331635,

%T 248261291960,4113063835540,66327037011235,1049050826515965,

%U 16360528085273190,252545239130514350,3869090307434050625,58948119057416280295,894447719738683138420

%N Number of connected 4-element antichains on a labeled n-set.

%H G. C. Greubel, <a href="/A094035/b094035.txt">Table of n, a(n) for n = 0..845</a>

%F E.g.f.: (exp(15*x) - 12*exp(11*x) + 24*exp(9*x) - 14*exp(7*x) + 27*exp(6*x) - 60*exp(5*x) - 24*exp(4*x) + 155*exp(3*x) - 141*exp(2*x) + 50*exp(x) - 6)/4!.

%F G.f.: 5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)). - _Colin Barker_, Oct 13 2017

%t With[{nmax = 50}, CoefficientList[Series[(Exp[15*x] - 12*Exp[11*x] + 24*Exp[9*x] - 14*Exp[7*x] + 27*Exp[6*x] - 60*Exp[5*x] - 24*Exp[4*x] + 155*Exp[3*x] - 141*Exp[2*x] + 50*Exp[x] - 6)/4!, {x, 0, nmax}], x] Range[0, nmax]!] (* _G. C. Greubel_, Oct 07 2017 *)

%o (PARI) x='x+O('x^50); concat([0,0,0,0], Vec(serlaplace((exp(15*x) -12*exp(11*x) +24*exp(9*x) -14*exp(7*x) +27*exp(6*x) -60*exp(5*x) -24*exp(4*x) +155*exp(3*x) -141*exp(2*x) +50*exp(x) -6)/4!))) \\ _G. C. Greubel_, Oct 07 2017

%o (PARI) concat(vector(4), Vec(5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)) + O(x^30))) \\ _Colin Barker_, Oct 13 2017

%Y Cf. A016269, A047707, A051112-A051118, A094033-A094037.

%K nonn,easy

%O 0,5

%A Goran Kilibarda, _Vladeta Jovovic_, Apr 22 2004