login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A093885
a(n) = floor( {product of all possible sums of (n-1) numbers chosen from among first n numbers} / {sum of all possible products of (n-1) numbers chosen from among first n numbers} ).
0
0, 0, 5, 60, 876, 15820, 342490, 8659697, 250596841, 8170355939, 296392500231, 11842341000706, 516766134975841, 24454542316972336, 1247414741568401188, 68231675778495540368, 3983959314088980184276, 247324089280835008754847
OFFSET
1,3
COMMENTS
The denominator is given by A000254(n).
REFERENCES
Amarnath Murthy, Another combinatorial approach towards generalizing the AM GM inequality, Octogon Mathematical Magazine Vol. 8, No. 2, October 2000.
Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal Vol. 11, No. 1-2-3 Spring 2000.
EXAMPLE
a(1) = 1, a(2) = floor((1*2)/(1+2)) = 1, a(3) = floor((1+2)*(1+3)*(2+3)/(1*2+1*3+2*3)) = floor(60/11) = 5.
MATHEMATICA
Do[l = Select[Subsets[Range[n]], Length[ # ]==n-1&]; a = Times @@ Map[Plus @@ #&, l]; b = Plus @@ Map[Times @@ #&, l]; Print[Floor[a/b]], {n, 1, 20}] (* Ryan Propper, Sep 28 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 22 2004
EXTENSIONS
More terms from Ryan Propper, Sep 28 2006
STATUS
approved