login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of all possible sums of three numbers taken from among first n natural numbers.
4

%I #24 Sep 01 2023 07:16:18

%S 6,3024,2874009600,159950125679984640000,

%T 20708778572935434707683938140160000000,

%U 302101709923756073800654275737927385319576932502732800000000000

%N Product of all possible sums of three numbers taken from among first n natural numbers.

%D Amarnath Murthy, Another combinatorial approach towards generalizing the AM GM inequality, Octogon Mathematical Magazine Vol. 8, No. 2, October 2000.

%D Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal Vol. 11, No. 1-2-3 Spring 2000.

%H Vaclav Kotesovec, <a href="/A093884/b093884.txt">Table of n, a(n) for n = 3..17</a>

%F a(n) ~ sqrt(Pi/A) * 2^(5/12 - n/4 - n^2 - 2*n^3/3) * 3^(-1/6 - 7*n/24 + 3*n^3/4) * exp(1/24 - n/3 + 3*n^2/4 - 11*n^3/36 + zeta(3)/(48*Pi^2)) * n^(11/24 + n/3 - n^2/2 + n^3/6), where A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 31 2023

%e a(4) = (1+2+3)*(1+2+4)*(1+3+4)*(2+3+4) = 3024.

%t Table[Product[(j + k + m), {k, 2, n}, {j, 1, k - 1}, {m, 1, j - 1}], {n, 3, 10}] (* _Vaclav Kotesovec_, Aug 31 2023 *)

%t Table[Product[Sqrt[BarnesG[3*k] * BarnesG[k+2] * Gamma[k/2 + 1] / Gamma[3*k/2]] / (BarnesG[2*k + 1] * 2^((k-1)/2)), {k, 1, n}], {n, 3, 10}] (* _Vaclav Kotesovec_, Aug 31 2023 *)

%Y Cf. A093883, A306594.

%K nonn

%O 3,1

%A _Amarnath Murthy_, Apr 22 2004

%E More terms from _Vladeta Jovovic_, May 27 2004