login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of all possible sums of two distinct numbers taken from among first n natural numbers.
116

%I #46 Nov 21 2023 04:33:06

%S 1,3,60,12600,38102400,2112397056000,2609908810629120000,

%T 84645606509847871488000000,82967862872337478796810649600000000,

%U 2781259372192376861719959017613164544000000000

%N Product of all possible sums of two distinct numbers taken from among first n natural numbers.

%C From _Clark Kimberling_, Jan 02 2013: (Start)

%C Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.

%C Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).

%C Guide to related sequences:

%C ...

%C s(n).............. D(n)....... P(n)

%C n................. A000178.... (this)

%C n+1............... A000178.... A203470

%C n+2............... A000178.... A203472

%C n^2............... A202768.... A203475

%C 2^(n-1)........... A203303.... A203477

%C 2^n-1............. A203305.... A203479

%C n!................ A203306.... A203482

%C n(n+1)/2.......... A203309.... A203511

%C Fibonacci(n+1).... A203311.... A203518

%C prime(n).......... A080358.... A203521

%C odd prime(n)...... A203315.... A203524

%C nonprime(n)....... A203415.... A203527

%C composite(n)...... A203418.... A203530

%C 2n-1.............. A108400.... A203516

%C n+floor(n/2)...... A203430

%C n+floor[(n+1)/2].. A203433

%C 1/n............... A203421

%C 1/(n+1)........... A203422

%C 1/(2n)............ A203424

%C 1/(2n+2).......... A203426

%C 1/(3n)............ A203428

%C Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j<k<=n}, which is the Vandermonde determinant if f(x,y)=y-x and the Vandermonde permanent if f(x,y)=x+y.

%C ...

%C If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:

%C ...

%C s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2

%C n ............... A203012..... A203312..... A203475

%C n+1 ............. A203581..... A203583..... A203585

%C 2n-1 ............ A203514..... A203587..... A203589

%C n^2 ............. A203673..... A203675..... A203677

%C 2^(n-1) ......... A203679..... A203681..... A203683

%C n! .............. A203685..... A203687..... A203689

%C n(n+1)/2 ........ A203691..... A203693..... A203695

%C Fibonacci(n) .... A203742..... A203744..... A203746

%C Fibonacci(n+1) .. A203697..... A203699..... A203701

%C prime(n) ........ A203703..... A203705..... A203707

%C floor(n/2) ...... A203748..... A203752..... A203773

%C floor((n+1)/2) .. A203759..... A203763..... A203766

%C For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

%D Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.

%D Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

%H T. D. Noe, <a href="/A093883/b093883.txt">Table of n, a(n) for n = 1..20</a>

%F Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - _Vladeta Jovovic_, May 27 2004

%F G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 15 2013

%F a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Jan 26 2019

%e a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.

%p a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):

%p seq(a(n), n=1..12); # _Alois P. Heinz_, Jul 23 2017

%t f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* _Robert G. Wilson v_, Jan 08 2013 *)

%o (PARI) A093883(n)=prod(i=1,n,(2*i-1)!/i!) \\ _M. F. Hasler_, Nov 02 2012

%Y Cf. A006963, A093884, A203469.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Apr 22 2004

%E More terms from _Vladeta Jovovic_, May 27 2004