login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = 10^(n-1) -1 + k*floor(9*10^(n-1)/(n+1)), with 1 <= r <= n, read by rows.
3

%I #23 Sep 08 2022 08:45:13

%S 4,39,69,324,549,774,2799,4599,6399,8199,24999,39999,54999,69999,

%T 84999,228570,357141,485712,614283,742854,871425,2124999,3249999,

%U 4374999,5499999,6624999,7749999,8874999,19999999,29999999,39999999,49999999,59999999,69999999,79999999,89999999

%N Triangle T(n,k) = 10^(n-1) -1 + k*floor(9*10^(n-1)/(n+1)), with 1 <= r <= n, read by rows.

%C The n-th row of this triangle contains n uniformly located n-digit numbers, i.e., n terms of an arithmetic progression with 10^(n-1)-1 as the term preceding the first term and (n+1)-th term is the largest possible n-digit term.

%C Starting with n=2, the n-th row of this triangle can be obtained by deleting the least significant digit, 9, from terms ending in 9 in the (n+1)-th row, and ignoring the main diagonal terms, of the triangle in A093846.

%C Floor(A093846(4,1)/10) = T(3,1) = 324, but floor(A093846(2,1)/10) = 5 and T(1,1) = 4, floor(A093846(7,1)/10) = 228571 and T(6,1) = 228570, etc. - _Michael De Vlieger_, Jul 18 2016

%H G. C. Greubel, <a href="/A093850/b093850.txt">Rows n = 1..100 of triangle, flattened</a>

%e Triangle begins with:

%e 4;

%e 39, 69;

%e 324, 549, 774;

%e 2799, 4599, 6399, 8199;

%e 24999, 39999, 54999, 69999, 84999;

%e ....

%p A093850 := proc(n,r)

%p 10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ;

%p end proc:

%p seq(seq(A093850(n,r),r=1..n),n=1..14) ; # _R. J. Mathar_, Sep 28 2011

%t Table[# -1 +r*Floor[9*#/(n+1)] &[10^(n-1)], {n, 8}, {r, n}]//Flatten (* _Michael De Vlieger_, Jul 18 2016 *)

%o (PARI) {T(n,k) = 10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1))}; \\ _G. C. Greubel_, Mar 21 2019

%o (Magma) [[10^(n-1) -1 +k*Floor(9*10^(n-1)/(n+1)): k in [1..n]]: n in [1..8]]; // _G. C. Greubel_, Mar 21 2019

%o (Sage) [[10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1)) for k in (1..n)] for n in (1..8)] # _G. C. Greubel_, Mar 21 2019

%Y Cf. A093846, A093847, A061772, A093451, A093552.

%Y Cf. A093852.

%K easy,nonn,tabl,base

%O 1,1

%A _Amarnath Murthy_, Apr 18 2004

%E Second comment clarified by _Michael De Vlieger_, Jul 18 2016

%E Edited by _G. C. Greubel_, Mar 21 2019