The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093792 Hook products of all partitions of 13. 0
290304, 290304, 302400, 302400, 362880, 362880, 388800, 414720, 414720, 483840, 483840, 518400, 518400, 518400, 518400, 537600, 537600, 544320, 544320, 604800, 604800, 665280, 665280, 691200, 691200, 725760, 725760, 725760, 798336, 798336 (list; graph; refs; listen; history; text; internal format)





Table of n, a(n) for n=1..30.


H:=proc(pa) local F, j, p, Q, i, col, a, A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j], j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j], j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j, j=1..nops(Q[i]))] od: a:=proc(i, j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa), pa[1], a): product(product(A[m, n], n=1..pa[1]), m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i], i=1..nops(a))] end: sort([seq(H(rev(partition(13)[q])), q=1..numbpart(13))]);


Cf. A003877.

Sequence in context: A237147 A237556 A121742 * A068241 A250618 A252992

Adjacent sequences:  A093789 A093790 A093791 * A093793 A093794 A093795




Emeric Deutsch, May 17 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:02 EST 2021. Contains 349594 sequences. (Running on oeis4.)